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Abstract

Regret-minimizing strategies for repeated games have been receiv-

ing increasing attention in the literature. These are simple adaptive

behavior rules that lead to no regrets and, if followed by all players,

exhibit nice convergence properties: the average play converges to cor-

related equilibrium, or even to Nash equilibrium in certain classes of

games. However, the no-regret property relies on a strong assumption

that each player treats her opponents as unresponsive and fully ignores

the opponents’ possible reactions to her actions. We show that if at

least one player is slightly responsive, it is impossible to achieve no re-

grets, and convergence results for regret minimization with responsive

opponents are unknown.
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1. Introduction. In a repeated interaction, an individual follows a regret-

minimizing strategy if, loosely speaking, she reinforces those actions that she

regrets not having played enough in the past. A particularly simple strategy

is regret matching, which is defined by the following rule:

Switch next period to a different action with a probability

that is proportional to the regret for that action, where regret is

defined as the increase in payoff had such a change always been

made in the past (Hart and Mas-Colell, 2000; Hart, 2005).

This strategy, in particular, has the property “never change a winning team,”

in other words, do not switch to a different action, as long as the current

action keeps being a best reply to the observed (average) actions of the

opponents.

Regret-minimizing strategies that lead to “no regrets” irrespective of what

the opponents play, called no-regret strategies, received a lot of attention in

the recent literature.1 The main value of these strategies is that they are

simple adaptive behavior rules that are neither computationally demanding

nor relying on common knowledge assumptions and yet exhibiting nice con-

vergence properties. If all players follow no-regret strategies, their average

joint play converges to the set of correlated equilibria or to the Hannan set2,

depending on the notion of regret in use (Hart and Mas-Colell 2000; see also

Lehrer 2003, Cesa-Bianchi and Lugosi 2006); or even to Nash equilibria on

certain classes of games (Hart and Mas-Colell 2003; Marden, Arslan, and

Shamma 2007).

1A non-exhaustive list includes Littlestone and Warmuth (1994), Fudenberg and Levine
(1995), Foster and Vohra (1998), Foster and Vohra (1999), Freund and Schapire (1999),
Hart and Mas-Colell (2000), Hart and Mas-Colell (2001), Hart and Mas-Colell (2003),
Lehrer (2003), Young (2004), Cesa-Bianchi and Lugosi (2003), Cesa-Bianchi and Lugosi
(2006), Lehrer and Solan (2009).

2The Hannan set of a game is the set of all mixed action profiles that satisfy Hannan’s
(1957) no-regret condition. It is also known as the set of coarse correlated equilibria first
appeared in Moulin and Vial (1978), but explicitly defined as a solution concept by Young
(2004, Ch.3).
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In this note we raise the question of validity of the regret minimization

objective in the context of games. On the one hand, according to the notions

of regret used in the literature, an individual who contemplates whether she

could have done better by having played a particular action more often in

the past does not take into account the effect of her actions on the subse-

quent behavior of her opponent. This is perfectly fine in a decision making

environment, but not in a game, where, by definition, players are responsive

to their opponents’ behavior. We show by example that failure to take the

opponent’s responsiveness into account may lead to unrealistic behavior.3

On the other hand, if we extend the notion of regret to take into account

the above mentioned effect, then it becomes impossible to guarantee no re-

grets, even against a severely restricted set of the opponent’s strategies. We

show that if an opponent is slightly responsive to the player’s past behavior,

the maximum regret need not converge to zero. Consequently, even if all play-

ers play regret-minimizing strategies (such as Hart and Mas-Colell’s (2000)

regret matching) with respect to this extended notion of regret, their regrets

need not vanish in the long run, and consequently, the known convergence

results are not guaranteed.

2. Regrets. Consider a finite two-player game, with players named Alice

and Bob.4 Let A and B be sets of actions of Alice and Bob, respectively, and

let u : A×B → R be Alice’s payoff function. The game is played repeatedly

in time periods t = 1, 2, . . ., in which players choose actions (at, bt). The

history of realized actions is observable for both players.

3This problem is recognized in the computer science literature. Farias and Megiddo
(2004) and Cesa-Bianchi and Lugosi (2006, Ch.7.11) show that regret minimizing strategies
fail to lead to the cooperative outcome in a repeated prisoner’s dilemma. Our example
is different and, as we believe, has a value on its own, as it illuminates failure to learn
the Pareto dominant equilibrium of a one-shot game, whereas the above literature shows
failure to learn playing strictly dominated actions.

4Bob can be considered as a set of players, so the arguments presented below trivially
extend to n-player games.
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Denote by ŪT (a, b) the average payoff of Alice up to period T ,

ŪT (a, b) =
1

T

T∑
t=1

u(at, bt),

and denote by UT (a(a∗|a′), b) the average payoff that Alice would have ob-

tained had she played a′ instead of the reference action a∗ every time in the

past when she actually played a∗,

UT (a(a∗|a′), b) =
1

T

T∑
t=1

wt(a
′),

where

wt(a
′) =

u(a′, bt), if at = a∗,

u(at, bt), if at 6= a∗.

Alice’s regret rT (a′, a∗; a, b) for choosing action a∗ instead of action a′ after

T periods is defined as the excess of UT (a(a∗|a′), b) over ŪT (a, b),

rT (a′, a∗; a, b) = UT (a(a∗|a′), b)− ŪT (a, b).

The objective of the previous literature has been to identify strategies

for Alice that guarantee no regrets in the long run. More specifically, let

hT = ((a1, b1), . . . , (aT , bT )) denote the history of play up to T , and let H
be the set of all finite histories. Alice has a no-regret strategy α : H →
∆(A) if lim supT→∞ rT (a′, a∗; a, b) ≤ 0 holds almost surely under α for all

deterministic sequences b and all pairs of actions (a∗, a′).

According to the above definition of regret5, Alice evaluates her regret for

choosing action a∗ instead of action a′ by contemplating how much higher

5Specifically, we have been considering conditional regrets. The unconditional regret of
Alice for an action a′ refers to the difference in her average payoff had she always chosen a′

instead of her actual past play. “No conditional regret” implies “no unconditional regret”,
but not vice versa, unless Alice has only two actions.
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payoff, on average, she could have received had she played a′ in every past

period when she actually played a∗, assuming that the play of the opponents

would have remained unchanged. This definition is plausible in the context of

decision making, when an individual’s actions have no effect on the opponent,

who can be perceived as an abstract environment. It is much less appealing

if the individual is engaged in a game, where the opponent’s future play can

be responsive to the individual’s present actions.

Bob
Alice L R
L 1, 1 0, 0
R 0, 0 100, 100

Figure 1

3. An example. For illustration, consider the following coordination

game (Fig. 1). Suppose that the observed play up to period T ≥ 2 is

((a1, b1), (a2, b2), . . . , (aT , bT )) = ((L,L), (L,L), . . . , (L,L)). Given this his-

tory, from the perspective of Alice, playing L is a best reply to the average

realized play of Bob.

Does Alice have regret for action R? Not according to the above defi-

nition. Looking at the observed sequence of play, Alice takes the actions of

Bob as given and realizes that had she chosen R every time she chose L, she

would have gotten a lower payoff.

This argument relies on the assumption that the sequence of Bob’s actions

does not depend on what Alice plays. In other words, Bob’s action in a

given period does not depend on the previous choices of Alice. However, if

Bob’s strategy is adaptive, in the sense that Bob’s choices depend on Alice’s

previous actions, then it is not clear whether or not Alice could not have

done better. For instance, if Bob’s strategy is to choose a best response to

what Alice did in the last round, then Alice would regret not choosing R.
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To summarize: Could Alice have done better by having switched to R?

(I) No, if Bob’s strategy is independent of Alice’s actions.

(II) Possibly, if Bob’s strategy is adaptive.

As argued above, the definition of regret implicitly relies on the assump-

tion that Bob’s strategy is independent of Alice’s actions. However, in game

situations players can react to what the opponents do. Hence, the evaluation

of the regret of not choosing R depends on how the opponent would have

reacted to this change. This reaction has to be included into the definition

of regret.

Note that the above discussion does not require that Alice knows Bob’s

payoffs. It is only Bob’s behavior that Alice has to be concerned with, in

particular, whether or not Bob can condition his choices on what Alice does

and react as described above.

4. Regrets against history dependent behavior. Above we consider

regrets of Alice when facing a given sequence of actions chosen by Bob. In

other words, the strategy of Bob was independent of Alice’s actions. Let us

now adjust our definition to allow for Bob to be adaptive, namely, to react to

what Alice has chosen in the past. To increase generality we will also allow

Bob to choose mixed actions, and hence to use a mixed strategy.

Denote by hT = ((a1, b1), . . . , (aT , bT )) the history of play up to T , and

let H be the set of all finite histories. Let α : H → ∆(A) and β : H → ∆(B)

be strategies of Alice and Bob, respectively, that prescribe mixed actions for

every history ht ∈ H. Denote by UT (α, β) the expected average payoff of

Alice up to period T when she plays α against Bob playing β,

UT (α, β) = E(α,β)

[
1

T

T∑
t=1

u(at, bt)

]
,

where the expectation is taken with respect to the probability measure over
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H induced by (α, β).

Fix Alice’s strategy α. Denote by α(a∗|a′) the strategy obtained from α

by replacement of a∗ by a′ in all periods where the realized action of α is a∗.

Formally, for every history h ∈ H let

α(a∗|a′)(h)[a∗] = 0, and

α(a∗|a′)(h)[a′] = α(h)[a∗] + α(h)[a′],

where α(h)[k] denotes the probability that α(h) assigns to action k ∈ A.

For a given strategy β of Bob, UT (α(a∗|a′), β) is the expected average

payoff that Alice would have obtained had she played a′ every time in the

past when her strategy α stipulated to play a∗, and when at every stage

t ≤ T Bob would have responded according to β to the new history.

Let B be a set of Bob’s feasible strategies, and let β ∈ B. Then Alice’s

regret for choosing a∗ instead of a′ is given by

ρT (a′, a∗;α, β) = UT (α(a∗|a′), β)− ŪT (α, β).

If ρT (a′, a∗;α, β) ≤ 0 for all β ∈ B, then Alice can conclude that she could

not have done better by switching a∗ to a′ in the past, no matter what is the

actual strategy of Bob.

A strategy of Alice is called a no-regret strategy against B if it guarantees

that Alice’s regrets become non-positive in the limit for every strategy of

Bob in B,

lim sup
T→∞

ρT (a′, a∗;α, β) ≤ 0 for all β ∈ B and all a′, a∗ ∈ A.

We hasten to point out that, apart from the use of expectations, the

definition of no-regret strategy for adaptive opponents is identical to that for

non-adaptive opponents. In particular, we do not introduce a new notion of

regret, we only adapt the notion to a richer set of strategies of Bob.
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It is known that there exist no-regret strategies against an unresponsive

opponent as considered in Section 2, i.e., when B contains only deterministic

sequences (or distributions over such sequences) (e.g., Hannan, 1957; Hart

and Mas-Colell, 2000, 2001; Cesa-Bianchi and Lugosi, 2003). Yet, as we show

below, a minimum of adaptiveness of Bob’s strategies to Alice’s past actions

leads to an impossibility result.

Bob’s strategy is called q-fictitious play if in every period t = 2, 3, . . ., with

probability 1−q Bob repeats his last-period action, and with probability q he

best-replies to Alice’s average past play. The initial play of Bob is arbitrary.

For some ε > 0 denote by Bε the set of q-fictitious play strategies with

q ∈ [0, ε]. In particular, Bε contains non-adaptive strategies where Bob plays

a constant action (0-fictitious play).

The next proposition shows that no strategy can guarantee the maximum

regret to converge to zero if Alice cannot exclude the possibility that her

opponent is responsive, even if the degree of responsiveness is arbitrarily

small.

Proposition. There exists a game such that, for every ε > 0, there does not

exist a no-regret strategy against Bε.

Before proving the proposition, let us briefly explain the intuition behind

it. Assume that Bob plays L in period one. In order to guarantee no regrets,

Alice needs to identify whether Bob is non-adaptive (q = 0) and thus playing

constant action L, or he is adaptive (q > 0) and thus able to coordinate

on the Pareto superior equilibrium (R,R). In the former case, Alice should

always respond by action L, whereas in the latter case Alice can guarantee

convergence to equilibrium (R,R) with probability one by always playing

R. To see this, observe that since q > 0, the probability that Bob has never

played fictitious play by period t is (1−q)t, which converges to zero as t→∞.

Hence, with probability one Bob will eventually best-reply to Alice’s past

average play. If Alice has been playing R frequently enough, Bob will switch

to R as well, and then the joint play locks in (R,R) forever. However, the
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problem is that Alice can never be confident enough that Bob is non-adaptive,

no matter how long she observes Bob playing L. Since q > 0 can be arbitrarily

small, the fact that Bob has always played L conveys no information about

Bob’s adaptiveness. That is to say, from Alice’s perspective, Bob’s types

q = 0 and q > 0 are statistically indistinguishable.

Proof. Consider the coordination game described earlier (Fig. 1). Fix ε > 0

and suppose that Bob plays q-fictitious play, βq ∈ Bε, q ∈ [0, ε], and let his

initial action be L. More specifically, in every period t ≥ 2, with probability

q Bob chooses action R if Alice has played R at least 1/100 fraction of time

so far, and otherwise Bob chooses L; with probability 1− q Bob repeats his

last-period action.

Observe that if Alice knew that q = 0, then her best reply would be to

always play L, since Bob is non-adaptive and repeats L forever, so ŪT =

u(L,L) = 1. On the other hand, if she knew that q > 0, then her best

reply would be to always play R, since eventually, with probability 1, Bob

would switch to R after observing Alice’s past average play being R, and the

further play would be locked on (R,R) forever, so ŪT → u(R,R) = 100 as

T →∞. Note that in order to derive Alice’s regret for choosing action, say,

R instead of L, one needs to replace Alice’s action L by R in every instance

where she plays L. Since there are only two actions, it means to compare the

performance of strategy α with constant play of R. Thus the two constant

strategies (always R and always L) are our benchmarks relative to which

Alice will measure her regret. The task of Alice is to design a strategy that,

without knowing q = 0 or q > 0, will result in limit average payoffs close to

1 in the former case and to 100 in the latter case. We will show that this

construction is impossible.

Suppose by contradiction that there exists a no-regret strategy for Alice

against Bε. Note that after the first time, t, where Bob played R, Alice

has a no-regret strategy for the subgame on t + 1, t + 2, . . ., by playing R

constantly from t + 1 on. To see this, observe that in every period after t,
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Bob either repeats his last action, R, or best-replies to Alice’s average play.

The best reply action is also R, since it has been his best-reply in period t

and Alice has played only R since then. Alice’s payoff will be constantly 100

from period t+ 1 on, and hence, she will have no regrets. Thus, a no-regret

strategy (if it exists) can be fully described by Alice’s play in every period t,

so long as Bob plays L; and it stipulates to play R constantly after the first

time Bob played R.

Let z∗t be the frequency with which Alice chose action R in {a1, . . . , at}.
Consider the subsequence of periods, {ts}, such that z∗ts ≥ 1/100 and Bob

has chosen L constantly up to ts. These are the periods where Bob would

have played R had he taken the best-reply action.

First, suppose that this subsequence is finite, i.e., there is a number S

such that |{ts}| = S. Let us evaluate the expected payoff for Alice when Bob

follows q ficitious play with q > 0. The probability that Bob never plays R

up to tS is equal to (1− q)S. In this event the play will be locked on (L,L)

forever, thus Alice’s average payoff ŪT will approach u(L,L) = 1. With the

complementary probability 1− (1− q)S, Bob plays R before or on tS. From

that period on the play is locked on (R,R), thus Alice’s average payoff ŪT

will approach u(R,R) = 100. The expected payoff (from the perspective of

period zero) will therefore approach

lim
T→∞

ŪT = (1− (1− q)S) · 100 + (1− q)S · 1 = 100− 99(1− q)S.

Thus, Alice’s regret for not playing R constantly is

lim
T→∞

(UT (R)− ŪT ) = 99(1− q)S.

It is straightforward to see that, for a given S, this regret is bounded away

from zero for every sufficiently small q. For example, for every q ≤ 9/(S+ 9)

the regret is at least 1/100.6

6Inequality 99(1−q)S ≥ 1/100 is equivalent to S ln(1−q) ≥ − ln 9900. Since ln(1−q) ≥
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Alternatively, suppose that subsequence {ts} is infinite. Let us evaluate

the expected payoff of Alice when Bob is non-adaptive (q = 0), so that he

never plays R. In every period ts, the frequency of action R in Alice’s past

play is at least 1/100. Thus,

Ūts ≤
99

100
u(L,L) +

1

100
u(R,L) =

99

100
· 1 +

1

100
· 0 =

99

100

Hence Alice’s regret for not playing L constantly is

lim sup
T→∞

(UT (L)− ŪT ) ≥ lim sup
s→∞

(Uts(L)− Ūts) ≥ 1− 99/100 = 1/100.

It follows that no matter what Alice plays, there exists a strategy in Bε
of Bob such that lim sup of Alice’s regret for one of the constant actions is

bounded away from zero.

One may wish to evaluate regret without taking expectations, in the spirit

of an ex-post perspective, when looking back at what has happened. It is as

if one only evaluates regret against Bob who is choosing some pure strategy.

Our proof above does not show that such a no “ex-post” regret strategy fails

to exist, as it relied on deriving regret when Bob chooses a mixed strategy.

However, it can easily be adapted. We say that Bob plays a deterministic

q-fictitious play for some q ∈ [0, 1] if there is a deterministic subsequence of

periods where Bob best-replies to Alice’s past play, with the property that up

to every period T the fraction of periods where Bob has best-replied does not

exceed q. It is then easy to see that if Bε is the set of deterministic q-fictitious

play strategies with q ≤ ε, then a no-regret strategy for Alice does not exist

for any ε > 0.

Alternatively, the following example shows that there does not exist a no-

regret strategy for Alice against Bob using one of three simple pure strategies.

The key to this example will be that Bob uses trigger strategies. Consider

−q/(1− q) and ln 9900 ≥ 9, the above inequality holds if Sq/(1− q) ≤ 9. Rearranging the
terms yields q ≤ 9/(S + 9).
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Bob
Alice L M R
L 2, 2 1, 1 0, 0
R 0, 0 1, 1 2, 2

Figure 2

the game on Fig. 2 and suppose that the set of strategies of Bob includes

the following:

(non-adaptive) Bob constantly plays M .

(adaptive-L) Bob starts with M . Then, if Alice played L in the initial

period, then Bob will play L from period 2 forever, otherwise he will

play M forever.

(adaptive-R) the same as adaptive-L except L is replaced by R.

In this game, Alice’s long-run average payoff is determined entirely by Bob’s

type and Alice’s initial action, since Bob’s actions are constant from period

2 on. Now observe that no matter what Alice plays in period 1, there is a

type of Bob, either adaptive-L or adaptive-R, that would make her regret

for action L or R, respectively, in all subsequent periods. Indeed, if Alice

chooses, for instance, L in the first period and Bob’s type is adaptive-R, then

the following play of Bob will be constantly M , and Alice’s average payoff

will be 1. However, Alice could have obtained the average payoff of 2, had

she started her play with R.

5. Conclusion. To sum up, the notion of regret used in the literature is

not satisfactory in the context of repeated games as it fails to take into ac-

count possible reaction of opponents to changes in one’s actions. We define

an extended notion of regret, with respect to opponents’ strategies (rather

than realized actions) and show that in this case no-regret strategies need
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not exist when the opponents are adaptive. Two examples provide the in-

tuition for this result: the regrets persist because the opponent’s strategy

cannot be statistically identified (as in the former example) or because the

opponent uses trigger strategies, where an early decision of the player (which

is payoff-relevant for the the entire infinitely repeated interaction) has to be

made when the player has not been yet informed about the opponent’s strat-

egy. The first example, in fact, shows that the no-regret property of regret

minimizing strategies is not robust, as it fails to hold even when there is only

a small probability that the opponent is adaptive. All arguments extend to

n-player games, where it suffices that one player is adaptive.

We conclude that the existing no-regret strategies should be used with

caution in the context of repeated games. They are appropriate if players

are boundedly rational and assume that their opponents are non-adaptive.

However, more realistically, if players understand that their own behavior

may influence others’, then the no-regret property cannot be achieved.
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